STATISTICS Ph. D. QUALIFYING EXAM STATISTICAL INFERENCE

April 09, 2012
General Instructions: Write your ID number on your answer sheets. Do not put your name on any of your answer sheets. Show all work. If you cannot solve a problem, at least explain what is this problem about and what approach may lead to its solution.

1. Prove that under squared loss function no unbiased estimator $\delta(X)$ of a parameter θ can be a Bayes estimator unless

$$
E\left\{(\delta(X)-\Theta)^{2}\right\}=0
$$

Assume that $f^{X, \Theta}(x, \theta)$, the joint distribution of (X, Θ), is defined.
2. Let X_{1}, \ldots, X_{n} be iid $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$, where both parameters are unknown. Remember two classical confidence sets (intervals) for the mean and the variance (you do not need to deduce/justify them but you are welcome to comment on them). Then combine them together, using the Bonferroni Inequality (rule) to make the simultaneous ($1-\alpha$) level set.
3. Let X_{1}, \ldots, X_{n} be iid $\operatorname{Pareto}(\theta, \nu)$ with the pdf

$$
f(x \mid \theta, \nu)=\theta \nu^{\theta} x^{-(\theta+1)} I(x \geq \nu), \quad \theta>0, \nu>0
$$

Note that ν is the scale parameter. Also let us note that the distribution is important in actuarial science where "heavy-tailed" distribution are used to describe losses.
Find the MLEs of θ and ν.
4. Let a sample of size n from a specified below distribution is given. Find and justify (a reference on a theorem/lemma/etc. will suffice) a complete sufficient statistic, or show that one does not exist.
a. $f(x \mid \theta)=\theta(1+x)^{-1-\theta} I(0<x) I(\theta>0)$.
b. $f(x \mid \theta)=\log (\theta) \theta^{x}(\theta-1)^{-1} I(0<x<1) I(\theta>1)$.
5. Let X_{1}, \ldots, X_{n} denote a random sample of size n from a continuous distribution with cumulative distribution function F. Also, let $X_{(1)}, \ldots, X_{(n)}$ denote the order statistics. Explain how you would choose integers r and $s(1 \leq r<s \leq n)$ such that the interval ($\left.L_{1}=X_{(r)}, L_{2}=X_{(s)}\right)$ satisfies

$$
P\left(F\left(L_{2}\right)-F\left(L_{1}\right) \geq p\right)=1-\alpha
$$

where both p and $1-\alpha$ are specified large probabilties. Such an interval is called a ($p, 1-\alpha$) tolerance interval. (You can use without proof the result that if $U_{(i)}$ and $U_{(j)}$ are i th and j th ($i<j$) ordered observations of a random sample of size n from a Uniform (0,1) distribution, then $U_{(j)}-U_{(i)}$ follows a Beta ($j-i, n-j+i+1$) distribution.)
6. Let X_{1}, \ldots, X_{n} denote a random sample of size n from a distribution with probability density

$$
f(x)= \begin{cases}\frac{1}{\theta} \exp (-(x-\theta) / \theta), & x>\theta \\ 0, & \text { otherwise }\end{cases}
$$

where $\theta>0$ is an unknown parameter.
(a) Show that both \bar{X} / θ and $X_{(1)} / \theta$ are pivotal quantities, where \bar{X} is the sample mean and $X_{(1)}$ is the samllest order statistic.
(b) Obtain a $100(1-\alpha) \%$ confidence interval for θ based on each pivotal quantity in (a).
(c) Explain which of the two confidence intervals in (b) you would recommend. Justify your answer.
7. Suppose that we have two independent random samples: X_{1}, \ldots, X_{n} are Exponential (θ), and Y_{1}, \ldots, Y_{m} are Exponential (μ).
(a) Find the LRT of $H_{0}: \theta=\mu$ versus $H_{1}: \theta \neq \mu$.
(b) Show that the test in part (a) can be based on the statistic

$$
T=\frac{\sum X_{i}}{\sum X_{i}+\sum Y_{j}}
$$

Ph.D. Qualifying Exam: Spring 2012

Linear models

- Number of questions $=3$. Answer all of them. Total points $=70$.
- Simplify your answers as much as possible and carefully justify all steps to get full credit.
- There is no need to prove any standard result. Just state the result and use it.
- All vectors are column vectors.

1. Let

$$
\begin{aligned}
& Y_{1}=\alpha+\epsilon_{1}, \\
& Y_{2}=2 \alpha_{1}-\alpha_{2}+\epsilon_{2}, \\
& Y_{3}=\alpha_{1}+2 \alpha_{2}+\epsilon_{3}
\end{aligned}
$$

where the errors are independently and identically distributed as $N\left(0, \sigma^{2}\right)$ random variables. Derive an F-test for testing $H_{0}: \alpha_{1}=2 \alpha_{2}$ against $H_{1}: \alpha_{1} \neq 2 \alpha_{2}$. [20 points]
2. Consider the following one-way ANOVA model with t groups and r observations per group:

$$
Y_{i j}=\theta_{i}+\epsilon_{i j}, j=1, \ldots, r, i=1, \ldots, t
$$

where the $\epsilon_{i j}$ are independently and identically distributed as $N\left(0, \sigma^{2}\right)$ random variables. Let $\bar{Y}_{i}=\sum_{j} Y_{i j} / r$ denote the sample mean of the i th group and $\bar{Y}=\sum_{i} \sum_{j} Y_{i j} /(r t)$ denote the overall sample mean. Also, define the following quantities:

$$
\begin{aligned}
& S S W=\text { Within-treatment sum of squares }=\sum_{i} \sum_{j}\left(Y_{i j}-\bar{Y}_{i}\right)^{2}, \\
& S S B=\text { Between-treatment sum of squres }=r \sum_{i}\left(\bar{Y}_{i}-\bar{Y}\right)^{2}
\end{aligned}
$$

(a) Show that $S S W / \sigma^{2} \sim \chi_{t(r-1)}^{2}$. [10 points]
(b) Under $H_{0}: \theta_{1}=\ldots=\theta_{t}, S S B / \sigma^{2} \sim \chi_{t-1}^{2}$, independent of $S S W$. [15 points]
(c) Under $H_{0}: \theta_{1}=\ldots=\theta_{t}$,

$$
F=\frac{S S B /(t-1)}{S S W /(t(r-1))} \sim F_{t-1, t(r-1)} .[5 \text { points }]
$$

3. Consider the set of data $\left(Y_{i}, x_{i}\right), i=1, \ldots, n$. Assume that the following two candidate models are fit to these data using the least-squares method:

$$
\begin{array}{ll}
\text { Model A: } & Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, i=1, \ldots, n \\
\text { Model B: } & Y_{i}=\gamma_{0}+\gamma_{1} x_{i}+\gamma_{2} x_{i}^{2}+\epsilon_{i}, i=1, \ldots, n
\end{array}
$$

Show that $R S S_{A} \geq R S S_{B}$. [20 points]

