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Nam

Instructions. Please solue any five problerns frcm the list ol the follotui,ng problems (show all your

work).

1.. Show that the following family of subsets of IR:

M: {E c R | ,E is countable or E" is countable}

is a o- algebra in IR.

2. Recall, the following definition of measurable function:

Definition Let M is a o-algebro, in X. A function h : X -, [-m,m] is measurable i'f the set

{r e X I h(") 2 r} is rneasurable for eaery r €lR".

Suppose that /,9 : R. -r [--,*] are measurable functions. Using the definition stated above,

show that the following set

{ceRl/(r)<s@)}
is measurable.

3. Supposethat/':R*[0,oo] ismeasurablefor rL:1,2,3,.'.,and.fl 2.lz> "'>0, f"(r)-+f (r)
* r, --t oo, for every r € IR, and h € Lr (pr.) , where p is the Lebesgue measure. Prove that then

ft

'tg /* fn dt': |,uf o'

a,nd show that this conclusion does not follow if the condition ".fi € L' (t") " is omitted.

4. Suppose p(X): L and suppose / and g are positive measurable functions on X such that /9 > 1.

Provethat (f \/f \(l r or)\J.n dr)>'

5. Let p is the Lebesgue mea,sure on IR. Suppose .f € Lt (t"). Prove that to each e > 0 there exists a

d>0suchthat

t vl dp<e
JE

whenever p(E) < 6.

6. Suppose / : IR -' IR is a measurable function on R and let p be the Lebesgue measure on lR.. Define

the following function

e@): I lf Y dp:ll /ll;, (o<p<m).
JR

Let E: {p I g@) <oo} and assume that ll / ll"" > 0. If r 1p I s, r e E,and s € -8, prove that
peE.



Ph.D. Qualifying Examination in Probability

April 11, 20LL

Instractions:

(a) There are three problems, each of e4ual weight. You rnay submit work on all thre..

(b) Extra credit rui,Il be giuen lor a problern with all parts solaed well.

(c) Look ouer all three problems before begi,nning work.

(d) Start nch problem on a neu page, and, number the pages.

(e) On ench page, i,nilic.ate problem number and, part, and urrite gour narne.

(f ) Ind,i.u,te your lines of reasoning and, what background, results are being applieil.

1. Let Xr, Xz,. . . be independent random variables with means pt, Fz,. . . and finite variances
o?,o3,... not necessarily bounded. Suppose that f[, o?li' < m. Exhibit, for any e ) 0,

an upper bound to the probability

/1, n I n | \

"(,1;rx -;>,"1")
that converges to 0 as n -) oo.

2. Let S,-: Xr + . . . + Xnbe a sequence of sums of non-negative random va,riables X,n, and
suppose that ,9,, converges to a random variable ,S in probability.

(a) Can you conclude that ,S,, converges to ,S almost surely?

(b) If E(Sn1< oo for some p > 0, can you conclude that

- ,S," converges to S in U (in mean of order p)?

- E(Sl,) converges to E(Sn)?

Justify your answers.

3. Two gamblers play the following game. Player I tosses a fair coin. If it lands up heads, he
pays $1 to player II. Otherwise, he receives $1 from player II. Player I sta,rts with $n, player
II starts with $rrz, and the ganne continues until one of the players runs out of money.

(a) Compute the probability that player I wins (i.e., player II runs out of money).

(b) Compute the e>cpected duration of the ga,me.

Hints. For (a), consider sequenceY", which is the profit (positive or negative) that player I
has after n coin fosses and show that it is a ma,rtingale. For (b), consider sequence (V] - ")and show that it is a martingale.



Ph.D. Qualifying Examination in Statistical Inference

April 15, 20II

Instru,ctions:

(a) There are three problems, each o! equal weight. You mag submit work on aII three.

(b) Ertra credit will be giaen for a problem with all parts solued well.

(c) Look oaer all three problems before beginning work.

(d) Start each problem on a neu page, and number the pages.

(e) On each page, indi,cate problem number and part, and write your nan'Le.

(f ) Indicate your I'ines of reasoning and what background results are being applied.

1. Let n(0) be a probability density function for parameter d supported on f,), and let ,R(0, d)
denote the risk function (expected loss, given 0) of any decision procedure d using data X.
Suppose that the Bayes rule d,(X) corresponding to n(d) satisfies

[ 
^(t,t^)n(o)dn- 

sup R(0,6,).
Jo oel

Explaining all steps and stating all definitions used, prove or disprove each of the following
assertions:

(i) d" is minimax.
(ii) If d, is the unique Bayes rule with respect Io n(0), then d,, is uniquely minimax.
(iii) n(9) is the least favorable probability density function for d.

2. Let us have a sample Xt, . .. , X,, from a population with probability density function

f@|il : Qo)-trilrl < o), o > o.

(i) Find a minimum variance unbiased estimator of L
(ii) Explore uniqueness of this estimator.

3. Let us have a sample Xt,...,X,, from the distribution Normal(0,A0), where both,4
and 0 are unknown. Find the 1 - a confidence set for the parameter ,4 that is obtained by
inverting the likelihood ratio test of Hs: A: .Ao v€rsus Ho: A * Ao.
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Ph.D. Qualifying Exam: Spring ?ALJ.

Linear models

o Number of questions : 3. Answer all of them. Total points : 50.

o Simplify your answers as much as possible and carefully justify all steps to get full
credit.

o There is no need to prove any standard result. Just state the result and use it.

o All vectors are column vectors.

1. Consider the linear model

Y:0U*et, 'i:7,...,fr,

where E(ea):0, var(e;) : o2fii, the errors are uncorrelated, and all ra) 0. Note that

Y, rt, e; and B in this problem are all scalar quantities.

(u) [8 points] Show that the weighted least squares estimator of B is P :Y lz.

(b) t7 points] Show that var(fl : o2lD*n.

2. Consider the following one-way ANOVA model with three groups and n observations

per group:

Yi:0nl eu, i - 1,.. .,tu, i: I,2,3-

Here we assume that the errors are independently and identically distributed as l/(0, o2)

random variables, and o2 is known. LetY6 denote the sample mean of ith group.

(") [Z points] Find the joint distribution of the vector (Y, -Yr,Yt -Tt). Be sure

to name the distribution and specify the parameters of the distribution.

(b) [8 points] Suppose ca represents the (t - a)th percentile of the scalar random

variable max{21, 22}, wherc the random vector (Zt, Z") follows a bivariate normal

distribution with standard normal marginals and correlation Il2. Define the

random variables

Lzt -Yz -Y1- cao\mt Lr - Ys -Yt - cao\m.

Use the distribution derived in (a) to show that L21 and -L31 represent 100(1 - a)%

simultaneous lowerconfidence bounds for 0z-il and 03-91, respectively. In other

words. show that

P(or - fu



3. Suppose the vector (Xr, Xr) follows a bivariate normal distribution with mean (pt, pr),

variance (o?,o|) and covariance op. Let D - Xt - X2 and,S : Xr * Xz. We want to

derive a test of the jointm.lt hypothesis Ho: Ltt: lrz,o?: o2z,by regressing D on,S.

(.) [5 points] Show that the joint distribution of the vector (D, S) is bivariate norrnal.

Express the parameters of (r, S) in terms of parameters of (Xt, Xr).

(b) [5 points] Show that E(DIS):00* 0rS, where

0o:, 
(o?-e2't n,:o?-o',0"' - t') - tffi | fu,+ p,1 and or : ffi

(") [S points] Use the result in (b) to find a null hypothesis that is equivalent to the

desired .I/s.

(d) [7 points] Suppose we have n independent observations of (Xt,Xz), namely

(Xu.,Xzt), i: I,...trl. Use these data and the result in (c) to derive a test

for the desired f/0. Be sure to specify the test statistic, its null distribution along

with the degrees of freedom, and the rejection region of the test.
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Ph.D. Qualifying Examination in Statistical Methods
April 18, 2011

A real estate appraiser is interested in predicting residential home prices in a mid-western
city as a function of various features.

Data on 522 recent home sales are available on the enclosed CD and also on the web

site http://www.utdallas.edu/-pfaron/Qual/. All the three files contain identical data in
different formats. The following variables are included.

Column Variable
1

2

3

4

5

6

7

8

I
10

11

T2

13

Identification number I-522
Sales price of residence (dollars)
Finished area of residence (square feet)
Total number of bedrooms in residence
Total number of bathrooms in residence
Air conditioning: present or absent
Number of cars that garage will hold
Pool: present or absent
Year property w&s originally constructed

Quality of construction: high, medium, or low
Indicator of architectural style
Lot size (square feet)
Location near a highway: yes or no

o Develop the best model you can for predicting the home sales prices. Use the suitable
variable selection and regression diagnostics methods.

o If any of your conclusions are based on certain assumptions, state them artd verify their
validity. Apply remedial mea.sures if necessary.

o Test whether any interaction exists between the construction quality, air conditioning,
and the presence of a pool.

o As a separate task, derive the best model you can for predicting the construction
quality of a home.

Instructions
- Load the data and conduct the necessary data analysis using software of yow choice.

- Submit a report, written or typed, hard copy or email. If you choose to e-mail the
report, send it to both a,mmann@utdallas.edu and mbaron@utdallas.edu.

- In the report, describe every step of your analysis: methods, rea"sons, results, and

conclusions. For example:

Test significance of aariable .... Use SAS, PROC ... with option ... The F test giaes a

p-ualue .... Therefore, ... ...

Veri,fy osw,rnptions of the test. Use ... ... Vari,oble ... ai,olates assumption ... beeau,se

... Therefore

- Attach your computer programs and only rcIevant parts of the output.


