Name:

Qualifying Exam, April 2010 Real Analysis I

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM Solve Problem 1- 4 and one of Problem 5 and 6.

Problem 1 (20 points.)

Let $\mathcal{A} \subset \mathcal{P}(X)$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A} , and $\mathcal{A}_{\sigma\delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ} . Let μ_0 be a premeasure on \mathcal{A} and μ^* the induced outer measure, i.e. $\mu^*(E) = \inf\{\sum_{j=1}^{\infty} \mu_0(A_j) : A_j \in \mathcal{A}, E \subset \bigcup_{j=1}^{\infty} A_j\}$.

a. For any $E \subset X$ and $\epsilon > 0$ there exists $A \in \mathcal{A}_{\sigma}$ with $E \subset A$ and $\mu^*(A) \le \mu^*(E) + \epsilon$. b. There exists $B \in \mathcal{A}_{\sigma\delta}$ with $E \subset B$ and $\mu^*(B) = \mu^*(E)$.

Problem 2 (20 points.)

Let (X, \mathcal{M}) be a measurable space and μ be a measure on it. Suppose $f : X \to [0, \infty]$ is measurable on (X, \mathcal{M}) . Define $\nu(E) = \int_E f d\mu$ for any $E \in \mathcal{M}$. Show that ν is a measure.

Problem 3 (20 points.)

Let (X, \mathcal{M}) be a measurable space. Let $\{f_n\}$ be a sequence of real-valued measurable functions on (X, \mathcal{M}) . Prove that $\limsup_{n \to \infty} f_n(x)$ is measurable.

Problem 4 (20 points.)

Let (X, \mathcal{M}) be a measurable space and μ be a measure on it. Let $\{f_n\}$ be a sequence of positive measurable functions on (X, \mathcal{M}) . Assume that $\lim_{n \to \infty} f_n(x) = f(x)$ for each $x \in X$, and $\int f d\mu = \lim_{n \to \infty} \int f_n d\mu < \infty$. Prove that $\int_E f d\mu = \lim_{n \to \infty} \int_E f_n d\mu$ for each $E \in \mathcal{M}$.

Problem 5 (20 points.)

Let f be a Lebesgue measurable function on [0, 1] and $0 . Assume that <math>f \in L^q[0, 1]$. Show that $f \in L^p[0, 1]$ and $||f||_p \le ||f||_q$.

Problem 6 (20 points.)

Suppose $\{g_k(x)\}$ is a sequence of absolutely continuous functions on [a, b]. And there is a function $F \in L^1[a, b]$, such that $|g'_k(x)| \leq F(x)$ a.e. for all $k \in \mathbb{N}$. Also assume that $\lim_{k\to\infty} g_k(x) = g(x)$ and $\lim_{k\to\infty} g'_k(x) = f(x)$ a.e. Prove that g'(x) = f(x) a.e.

Ph.D. Qualifying Examination in Probability Theory

April 5, 2010

Solve any 3 of the following 4 problems, properly referring to any known results used.

- 1. Let $\{X_n\}$ be i.i.d. random variables with finite mean μ and variance σ^2 . Show that for any $\varepsilon > 0$ and p > 0.5, with probability 1,
 - (a) there exists a number N such that $|X_n| \leq \varepsilon n^p$ for any $n \geq N$;
 - (b) $|X_n| > \varepsilon/n^p$ for infinitely many n.
- 2. Let ξ_1, ξ_2, \dots be a sequence of i.i.d. Bernoulli random variables with parameter p = 0.5. Prove that $S_n = \sum_{k=1}^{n} 2^{-k} \xi_k$ converges a.s. to a standard uniform random variable.
- 3. Consider a game that can be played any number of times. Rounds are independent, and each time the probability of winning is p. For the *n*-th round, we bet some amount X_n . In case of a success, we win X_n in this round. Otherwise, we lose $\xi_n X_n$, which is our bet X_n multiplied by a random coefficient ξ_n , where ξ_1, ξ_2, \ldots are non-negative i.i.d. random variables, generated independently for each round. Let Y_n be our balance after n rounds.

The game has a one-time entrance fee of \$100, so we start with $Y_0 = -100$. To compensate for this fee, we use the following strategy. If $Y_n < 0$, we bet $X_{n+1} = |Y_n|$ for the next round. As soon as we win a round, our balance becomes $Y_n = 0$, and we quit the game.

- (a) Let τ be the number of rounds played until we win a round. Show that τ is a Markov stopping time with respect to $\{Y_n\}$ and that it is a proper random variable.
- (b) What value of $\mathbf{E} \xi_n$ makes $(Y_n, \mathcal{F}_{Y_1,\dots,Y_n})$ a martingale?
- (c) Assuming the value of Eξ_n found in (b), show that the conclusion of the Optional Stopping Theorem is wrong for Y_τ.
 (It does not have to hold because E|Y_{n+1} Y_n| is not bounded).
- 4. Consider the sample space $\Omega = \{1, 2, 3, ...\}$. For $A \subset \Omega$, define a set function

$$P(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} I_{\{k \in A\}}$$
 (if this limit exists).

- (a) Let \mathcal{A} be the class of sets A where P(A) exists. Is \mathcal{A} an algebra? Is it a σ -algebra? Explain which properties of an algebra and a σ -algebra the class \mathcal{A} has or does not have.
- (b) Show that P is an additive but not a countably additive probability measure on \mathcal{A} .
- (c) Show that for any $x \in [0, 1]$, there is a set A with P(A) = x.
- (d) Give an example of a non-measurable set with respect to P.

April 7, 2010

Instructions:

- (a) There are three problems, each of equal weight. You may submit work on all three.
- (b) Extra credit will be given for a problem with all parts solved well.
- (c) Look over all three problems before beginning work.
- (d) Start each problem on a new page, and number the pages.
- (e) On each page, indicate problem number and part, and write your name.
- (f) Indicate your lines of reasoning and what background results are being applied.

1. Let $\{X_1, \ldots, X_n\}$ be independent observations having distribution F on \mathbb{R} with mean μ and finite positive variance σ^2 . Define the sample variance as $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, with \overline{X} the usual sample mean.

- (a) Show that $s_n^2 \xrightarrow{p} \sigma^2$ as $n \to \infty$.
- (b) Show using (a) that $s_n \xrightarrow{p} \sigma$.
- (c) Investigate whether $\sqrt{n}(s_n \sigma) \xrightarrow{p} 0$ holds or does not hold.

2. Let X and Y be independent random variables having, respectively, finite means μ_X and μ_Y and medians ν_X and ν_Y . Put Z = X + Y.

- (a) Justify that the mean squared prediction error predictor of Z, given X, is $X + \mu_Y$.
- (b) Justify that the mean <u>absolute</u> prediction error predictor of Z, given X, is $X + \nu_Y$.

3. Suppose we have a random sample X_1, X_2, \ldots, X_n from an exponential distribution with cumulative distribution function $F(x) = 1 - \exp(-x/\lambda)$, where x > 0, and $\lambda > 0$ is the unknown parameter. Let $\theta_p = F^{-1}(p)$ denote the *p*th percentile of this distribution, where $0 . We would like to obtain an estimator of <math>\hat{\theta}_p$ of θ_p such that $E\{F(\hat{\theta}_p)\} = p$, i.e., the expected coverage of the interval $(-\infty, \hat{\theta}_p)$ is *p*. This interval is known as the *p*-expectation one-sided tolerance interval for the distribution *F*. Define $Y = \sum_{i=1}^n X_i$.

- (a) Show that $\theta_p = -\lambda \log(1-p)$.
- (b) Let $\hat{\theta}_p = c_n Y$, where $c_n = 1/(1-p)^{1/n} 1$. This estimator is obviously biased for θ_p , but show that $E\{F(\hat{\theta}_p)\} = p$.
- (c) Consider the estimator $\tilde{\theta}_p = -(Y/n)\log(1-p)$. This estimator is obviously unbiased for θ_p , but show that $E\{F(\tilde{\theta}_p)\} = 1 \{1 (1/n)\log(1-p)\}^{-n}$.
- (d) Show that the expectation in (c) is less than p.

- Number of questions = 3. Answer all of them. Total points = 40.
- Simplify your answers as much as possible and carefully justify all steps to get full credit.
- Consider the linear model Y = Xβ + ε, where Y is a n×1 vector, β is a p×1 vector, and X is a full-rank n×p regression matrix whose first column is a n×1 vector of 1's, say 1. It is assumed that E(ε) = 0 and var(ε) = σ²Ω, where Ω is a known non-singular matrix.
 - (a) Provide an expression for $\hat{\beta}_{OLS}$, the ordinary least squares estimator of β . [2 points]
 - (b) Provide an expression for $\hat{\beta}_{GLS}$, the generalized least squares estimator of β . [2 points]
 - (c) Show that $\hat{\boldsymbol{\beta}}_{OLS} = \hat{\boldsymbol{\beta}}_{GLS}$ if and only if

$$X'\Omega^{-1}\mathbf{Y} = X'\Omega^{-1}X(X'X)^{-1}X'\mathbf{Y}.$$
(1)

[4 points]

- (d) A sufficient condition for (1) is that whenever $X'\mathbf{Y} = 0$, it implies $X'\Omega^{-1}\mathbf{Y} = 0$. Show that this sufficient condition holds when $\Omega = (1-\rho)I + \rho\mathbf{11'}$, where $0 \le \rho < 1$ and I is an identity matrix of order $n \times n$. (Hint: $\Omega^{-1} = (1-\rho)^{-1}I - \rho(1-\rho)^{-1}(1+(n-1)\rho)^{-1}\mathbf{11'}$.) [6 points]
- 2. Consider the balanced one-way ANOVA model,

$$Y_{ij} = \theta_i + \epsilon_{ij}, \ j = 1, \dots, n, \ i = 1, \dots, k,$$

where we make the usual assumptions that the errors are independently and identically distributed as $N(0, \sigma^2)$ random variables.

- (a) Provide an expression for the *F*-statistic, say *F*, for testing the null hypothesis $H: \theta_1 = \ldots = \theta_k$, against the alternative that not all θ_i 's are equal. [4 points]
- (b) Provide an expression for the *t*-statistic, say $T_{ii'}$, for testing the null hypothesis $H_{ii'}: \theta_i = \theta_{i'}$, versus $K_{ii'}: \theta_i \neq \theta_{i'}$. [4 points]

1

(c) Show that

$$\frac{1}{k(k-1)}\sum_{i=1}^{k}\sum_{i'=1}^{k}T_{ii'}^2 = F.$$

This shows that the F-test can be considered as an average t-test. [7 points] 3. Consider the simple linear regression model,

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, 2, \dots, n,$$

where the ϵ_i follow independent $N(0, \sigma^2)$ distribution, with β_0 , β_1 and σ^2 as the unknown parameters. Assume that the x_i 's are fixed known constants and they need to be chosen in the interval [-1, 1], and n is even. Let $\hat{\beta}_0$ and $\hat{\beta}_1$ denote the least squares estimators.

(a) For what choice of x_1, \ldots, x_n is $var(\hat{\beta}_1)$ minimized? [5 points]

(b) For what choice of x_1, \ldots, x_n is $var(\hat{\beta}_0)$ minimized? [5 points]

2010 Statistics Qualifying Exam: Methods

Instructions: attach answers including graphic files to an email and send to ammann@utdallas.edu.

- The data for this problem can be found at http://www.utdallas.edu/~ammann/DMI.dat The response variable for this experiment is DMI. The independent variables are Type, Treatment, and Period, all of which are categorical.
 - (a) Fit an appropriate model to determine how DMI is affected by the independent variables.
 - (b) Verify the assumptions used with this model.
 - (c) Reduce the model, if possible, to remove variables and/or interactions that are not important.
 - (d) Interpret the final model.
 - (e) Use the model to construct a 95% confidence interval for the *mean* DMI of individuals who are type C, received Treatment 1 and were in Period Middle.

1

2. The data file, [http://www.utdallas.edu/~ammann/depress.dat] contains data from a study of clinical depression and includes the following variables:

Response va	ariable is mdd
mdd	clinical diagnosis of major depression:
	1=positive diagnosis, 0=negative diagnosis,
	9=missing
Indep varia	bles are
race	subject's self-reported race:
	1=white; 2=black
gender	subject's gender:
	1=male; 2=female
rparents	subject's guardian status:
· · ·	1=does not live with both natural parents;
	0=lives with both natural parents
cesdtot	subject's total center for epidemiologic studies depression
	scale score (range 0-60)
cohtot	subject's total cohesion score, based on faces-ii
	(range 16-80)

Ignore the other variables in this dataset.

- (a) Construct a model to predict the probability of a positive diagnosis of clinical depression based on the independent variables listed above, including 2-way interactions.
- (b) Determine which, if any, of these variables are not important and construct a new model from the remaining variables. Interpret the coefficients of this model.

3. Use the wasp data set,

http://www.utdallas.edu/~ammann/stat6343/wasp.dat

Fit a model to predict TL based all the other variables that also allows different slopes for queens (caste=Q) and workers (caste=W). Check the assuptions to make sure they are satisfied. Reduce this model to remove variables that do not contribute to the prediction of TL. Perform a formal hypothesis test to compare the full model with the reduced model. Interpret the reduced model.