Name: _

Qualifying Exam, April 2012 Real Analysis I Dr. Yan Cao

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM

Problem 1 (20 points.)

Let \mathbb{R} be the set of real numbers. Let $\mathcal{B}_{\mathbb{R}}$ be the Borel σ -algebra on \mathbb{R} . Let $\mathcal{E} = \{[a, \infty) : a \in \mathbb{R}\}$. Let $\mathcal{M}(\mathcal{E})$ be the σ -algebra generated by \mathcal{E} . Give a complete proof that $\mathcal{M}(\mathcal{E}) = \mathcal{B}_{\mathbb{R}}$.

Problem 2 (20 points.)

Let m^* denote the Lebesgue outer measure on \mathbb{R} , the set of real numbers.

(a) State the definition of Lebesgue outer measure m^* on \mathbb{R} .

(b) Show that m^* is countably subadditive, i.e. $m^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} m^*(A_j)$, where A_j 's are any subsets of \mathbb{R} .

(c) Show that $m^*(\mathbb{Q}) = 0$, where \mathbb{Q} is the set of rational numbers.

Problem 3 (20 points.)

Let $f : \mathbb{R} \to [0, \infty]$ be a measurable function. Prove that $\int_{\mathbb{R}} f = 0$ if and only if f = 0 a.e.

Problem 4 (20 points.)

Let $f: [0,1] \to \mathbb{R}$ be continuous. Let $g: [0,1] \to \mathbb{R}$ be Lebesgue measurable and $0 \le g(x) \le 1$ for $x \in [0,1]$. Find the limit

$$\lim_{n \to \infty} \int_0^1 f((g(x))^n) dx.$$

Problem 5 (20 points.)

Let m be the Lebesgue measure. Let A be a measurable subset of \mathbb{R} with $0 < m(A) < \infty$. Show that for $1 , we have <math>L^q(A) \subseteq L^p(A)$.

Name: _

Qualifying Exam, April 2012 Real Analysis II

Dr. Yan Cao

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM

Problem 1 (20 points.)

Let c_0 be the space of all sequences of real numbers converging to zero. Show that the dual (conjugate) space of c_0 is l_1 .

Problem 2 (20 Points.)

Let H be a Hilbert space. Let $f : H \to \mathbb{R}$ be a bounded linear functional and $f \neq 0$. Let N be the null space (kernel) of f. Let

$$N^{\perp} = \{ y \in H | < y, x \ge 0 \ \forall x \in N \}.$$
⁽¹⁾

(a) Show that N is a closed subspace of H.

- (b) Show that the dimension of N^{\perp} is 1.
- (c) Show that there is exactly one $x_0 \in H$, such that

$$f(x) = \langle x, x_0 \rangle$$
, and $||f|| = ||x_0||$. (2)

Problem 3 (20 points.)

Let *H* be a Hilbert space, and (e_k) be an orthonormal sequence in *H*. Then: (a) The series $\sum_{k=1}^{\infty} \alpha_k e_k$ converges (in the norm of *H*) if and only if the series $\sum_{k=1}^{\infty} |\alpha_k|^2$ converges. (b) If $\sum_{k=1}^{\infty} \alpha_k e_k$ converges to *x*, then $\alpha_k = \langle x, e_k \rangle$; hence $x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$.

Problem 4 (20 Points.)

Let (T_n) be a sequence of bounded self-adjoint linear operators $T_n : H \to H$ on a Hilbert space H. Assume that (T_n) converges to T, i.e. $||T_n - T|| \to 0$, where $|| \cdot ||$ is the norm on B(H, H), the space of all bounded linear operators from H into H. Show that

(a) T is linear.

- (b) T is bounded.
- (c) T is self-adjoint.
- (d) < Tx, x > is real for all $x \in H$.

Problem 5 (20 Points.)

Let X and Y be Banach spaces. Let B(X, Y) be the space of all bounded linear operators from X into Y. Assume $T_n \in B(X, Y)$, n = 1, 2, 3, ... Show that the following statements are equivalent:

(a) $(||T_n||)$ is bounded,

(b) $(||T_n x||)$ is bounded for every fixed $x \in X$,

(c) $(|g(T_nx)|)$ is bounded for every fixed $x \in X$ and every fixed $g \in Y'$, where Y' is the dual (conjugate) space of Y.

Name:

Abstract Algebra Qualifying Exam Spring 2012 Tobias Hagge

April 10, 2012

Solve any five problems. Show all work.

- 1. Let M be a set with two binary operations $\cdot : M \times M \to M$ and $\star : M \times M \to M$ such that both (M, \cdot) and (M, \star) are monoids. Suppose \cdot is a monoid homomorphism $\cdot : (M, \star) \times (M, \star) \to (M, \star)$ and similarly \star is a monoid homomorphism $\star : (M, \cdot) \times (M, \cdot) \to (M, \cdot)$. Show that
 - 1. $(M, \cdot) = (M, \star),$
 - 2. (M, \cdot) is commutative.
- 2. Classify all transitive G-sets up to G-set isomorphism, for the case $G = A_4$.

- 3. Show that a group of order 56 cannot be simple.
- 4. Show that every group of order p^2 , with p prime, is abelian.
- 5. Prove that every symmetric group S_n has an index 2 subgroup.
- 6. Let R be a commutative ring with 1, M a maximal ideal. Show that R/M is a field.
- 7. Show that every finitely generated Euclidean domain is a principal ideal domain.

Qualifying Exam Math 6315, Ordinary Differential Equations I, April 2012

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM Problems count 34 points each Give clear and complete answers with full details in proofs

1. Consider the n dimensional system

$$x' = Ax + f(x)$$

where A is a constant martix with $|e^{At}| \leq d^{-9t}$ for all $t \geq 0$. Suppose that f(x) is continuously differentiable and satisfies $|f(x)| \leq 5|x|$ for all $x \in \mathbb{R}^n$. Show that the solution of

$$x' = Ax + f(x), \quad x(0) = \xi$$

goes to zero as $t \to \infty$

2. Consider the initial value problem

$$x' = -x + t, \ x(0) = \xi$$

Find the solution by using the method of sussessive approximations.

3. Consider the boundary value problem

$$y'' + \lambda y = 0, \quad 0 \le t \le 1, \quad y(0) = 0, \ y(1) = 0$$

Is $\lambda = 0$ an eigenvalue? Compute the Green's function G(t, s, 0) for $0 \le s, t \le 1$.

Qualifying Exam Math 6316, Ordinary Differential Equations II, April 2012

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM Problems count 34 points each Give clear and complete answers with full details in proofs

1. Determine the stability of the trivial solution of

$$egin{array}{rcl} x_1' &=& x_2 + x_1^2 x_2 \ x_2' &=& x_2 - x_1 + x_2^2 x_1 \end{array}$$

by finding an appropriate Lyapunov function. You must prove that the function you find is actually a Lyapunov function for this system.

2. Find the stable and unstable manifolds of the system

$$\begin{array}{rcl} x_1' &=& x_1 + x_2^3 \\ x_2' &=& -x_2 \end{array}$$

Hint: Try a coordinate change (in which the first new coordinate involves x_1 and x_2^3) that maps the system to its linear part.

3. Consider the system

$$x' = Ax + F(x)$$

where A is an $n \times n$ constant matrix and $F : \mathbf{R}^2 \to \mathbf{R}^2$ is continuous. Suppose F(x) = o(|x|) as $|x| \to 0$ and there exist constants N and α such that

$$|e^{At}| \leq N e^{-\alpha t}$$

for all $t \ge 0$. Prove that if $0 < \beta < \alpha$ and if $|\phi(0)|$ is sufficiently small, then

$$|\phi(t)| \le N |\phi(0)| e^{-(\alpha - \beta)t}$$

for all $t \geq 0$.

Name:

Complex Analysis Qualifying Exam Spring 2012 Tobias Hagge

April 12, 2012

 $B_r(z)$ denotes the open ball of radius r, centered at z.

- 1. Let $a \in \mathbb{C} \cup \infty$ such that $|a| \neq 1$. Show that the circle through a, \bar{a}^{-1} , and 1 intersects the unit circle at right angles.
- 2. Let $D = B_1(0), f : \overline{D} \to \overline{D}$ analytic. Show that if f has a zero of order n > 0 at z = 0, then $|f(z)| \le |z|^n$ on \overline{D} .
- 3. Show that a nowhere zero, nonconstant entire function has an essential singularity at infinity.
- 4. Let $D_1 = B_1(0)$, $D_2 = B_2(0)$. Let $A = D_2 \overline{D_1}$. Suppose f is analytic on \overline{A} . Show that f may be written as g h, where g is analytic on $\overline{D_2}$ and h is analytic on $\mathbb{C} D_1$.
- 5. Compute the residue at z = 0 of the function $\frac{e^z}{\sin^3 z}$.
- 6. Compute $\int_0^\infty \frac{\cos x}{x^3 + x} dx$ by complex methods.

Topology (Dr. Mieczysław K. Dabkowski) **Qualifying Exam** Friday, April 13, 2012

Name.

Instructions. Please solve any **four problems** from the list of the following problems (show all your work).

1. Let $X = \mathbb{R}^2$. Check if the following function $d: X \times X \to \mathbb{R}$ given by

$$d((x_1, x_2), (y_1, y_2)) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

is a metric on X.

- **2.** Let G be an open subset of X and $A \subset X$.
- a) Prove that if $G \cap \overline{A} \neq \emptyset$, then $G \cap A \neq \emptyset$.
- **b)** Prove that $\overline{G \cap \overline{A}} = \overline{G \cap A}$.
- c) Show by example that the condition for G to be open is necessary.
- **3.** Let \mathbb{R}_{τ} be the set of real numbers with topology $\tau = \{(-x, x) \mid x > 0\} \cup \{\emptyset, \mathbb{R}\}$ and $\mathbb{R}_{\tau} \times \mathbb{R}_{\tau}$ be the product topology on \mathbb{R}^2 .
- a) Prove that $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ is open in $\mathbb{R}_\tau \times \mathbb{R}_\tau$.
- **b)** Find \overline{A} . (justify briefly your answer)
- 4. Show that X is Hausdorff if and only if the diagonal

$$\Delta = \{(x, x) \mid x \in X\}$$

is closed in $X \times X$.

- 5. Let A be a countable subset of \mathbb{R}^n , where n > 1. Show that $\mathbb{R}^n \setminus A$ is path-connected.
- 6. Let \mathbb{C} be the set of complex numbers. Consider the finite complement topology $\tau = \{A \subset \mathbb{C} \mid \mathbb{C} \setminus A \text{ is finite}\} \cup \{\emptyset\}.$
- a) Is (\mathbb{C}, τ) T₀? Yes or No (justify your answer).
- **b)** Is (\mathbb{C}, τ) T_1 ? Yes or No (justify your answer).
- c) Is (\mathbb{C}, τ) T_2 ? Yes or No (justify your answer).
- d) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a polynomial function, that is $f(z) = \sum_{i=0}^{n} a_i z^i$, where $a_i \in \mathbb{C}$ for i = 0, 1, 2, ..., n. Is f a continuous map from (\mathbb{C}, τ) to itself? Justify briefly your answer.
- e) Let $g: \mathbb{C} \longrightarrow \mathbb{C}$, $g(z) = e^z$, answer the same question as in point d).
- f) If we consider the restriction of g to \mathbb{R} (the set of real numbers), is g continuous?