Qualifying Exam, April 2009

Real Analysis I

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM Solve 4 of the following 5 problems. You must clearly indicate which 4 are to be graded.

Problem 1 (25 points.)
If μ^{*} is an outer measure on X and $\left\{A_{j}\right\}_{1}^{\infty}$ is a sequence of disjoint μ^{*}-measurable sets, then for any $E \subset X$,

$$
\mu^{*}\left(E \cap\left(\cup_{j=1}^{\infty} A_{j}\right)\right)=\sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)
$$

Problem 2 (25 points.)
Let $C \subset[0,1]$ be the Cantor set. Define $f: \dot{\mathbb{R}} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \notin C \\ 0 & \text { if } x \in C .\end{cases}
$$

(a) Is f Lebesgue measurable on \mathbb{R} ? Justify your answer.
(b) Is f Riemann integrable on $[0,1]$? Is f Lebesgue integrable on $[0,1]$? Justify your answer.

Problem 3 (25 points.)
Compute the following limit and justify the calculations. (Hint: Use the properties of the function $\frac{\sin y}{y}$.)

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} n \sin \left(\frac{x}{n}\right) d x
$$

Problem 4 (25 points.)
Let $\left\{f_{n}\right\}$ be a sequence of real-valued functions on \mathbb{R}. Let m be the Lebesgue measure. Show that if $f_{n} \rightarrow f$ in $L^{1}(\mathbb{R}, m)$, then $f_{n} \rightarrow f$ in measure. Is the converse true? Justify your answer.

Problem 5 (25 points.)
Let f and g be real-valued absolutely continuous functions on $[a, b], a<b$.
(a) Show that the product $f g$ is also absolutely continuous on $[a, b]$. (Hint: first show that f and g are bounded.)
(b) Show that $\int_{a}^{b}\left[f^{\prime}(x) g(x)+f(x) g^{\prime}(x)\right] d x=f(b) g(b)-f(a) g(a)$.

Name:

\qquad

Qualifying Exam, April 2009
 Real Analysis II

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM

Problem 1 (25 points.)
Let X abd Y be vector spaces. Let $T: X \rightarrow Y$ be a linear operator and $\operatorname{dim} X=\operatorname{dim} Y=n<\infty$. Show that $\mathcal{R}(T)=Y$ iff T^{-1} exists. Here \mathcal{R} denotes the range of T.

Problem 2 (25 points.)
Let $C[0,1]$ denote the normed space of all continuous real-valued functions on $[0,1]$, with the norm defined by $\|x\|=\max _{s \in[0,1]}|x(s)|$. On $C[0,1]$, define an operator T by $T x=x(s) y_{0}(s)$, where $y_{0} \in$ $C[0,1]$ is fixed. Show that T is a bounded linear operator and find its norm $\|T\|$.

Problem 3 (25 points.)
Let H be a Hilbert space.
(a) Prove that if $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.
(b) Let $M \subset H, M \neq \emptyset$. Prove that $M^{\perp} \subset(\overline{\operatorname{span} M})^{\perp}$.

Problem 4 (25 points.)
(a) Let X be a normed space and let $x_{0} \neq 0$ be any element of X. Use the Hahn-Banach Theorem for normed spaces to show that there exists a bounded linear functional \tilde{f} on X such that $\|\tilde{f}\|=1$ and $\tilde{f}\left(x_{0}\right)=\left\|x_{0}\right\|$.
(b) If X in (a) is a Hilbert space, find \tilde{f} in this case.

Ordinary Differential Equations
 Qualifying Exam
 April, 2009

1. Prove that if $f \in C(D)$ and if f satisfies a Lipshitz condition in D with Lipschitz constant L, then the initial value problem $x^{\prime}=f(t, x)$ and $\dot{x}(\tau) \doteq \xi$, with $(\tau, \xi) \in D$ has at most one solution on any interval $|t-\tau| \leq d$: Note: D is an open, connected, nonempty subset of R^{2} and $(t, x) \in D$.
2. Prove that if $\Phi(t)$ is a fundamental set of solutions of $x^{\prime}=A(t) x$ with periodic coeffcient $A(t)=A(t+T)$, then $\Phi(t+T)$ is also a fundamental set of solutions of $x^{\prime}=A(t) x$. Furthermore exist a non-singular periodic matrix $P(t)$, with period T and a constant matrix R such that $\dot{\Phi}(t)=P(t) e^{t R}$.
3. Suppose that for a continuous function $f(t)$ we are given that the equation

$$
x^{\prime}=\left(\begin{array}{ll}
1 & -3 \\
2 & -4
\end{array}\right) x+f(t)
$$

has at, least one solution $\phi_{p}(t)$ which satisfies

$$
\sup \{|\phi(t)|: \tau \leq t<\infty\}<\infty .
$$

Show that all the solutions of above ODE satisfy this boundedness condition.
4. For what values of a and b, with $0 \leq a<b \leq \pi$, is the differential operator L defined by

$$
L y=\frac{d}{d t}\left[(2+\sin t) \frac{d y}{d t}\right]+(\cos t) y, \quad y(a)=y(b), \quad \text { and } \quad y^{\prime}(a)=y^{\prime}(b)
$$

self-adjoint?

ABSTRACT ALGEBRA
 (DR. Mieczyslaw K. Dabkowski)
 Qualifying Exam
 April 8, 2009

Name
Instructions. Please solve any five problems from the list of the following problems (show all your work).

1. Prove that if $x^{2}=1$ for all $x \in G$ then G is abelian.
2. Prove that if $|G|=p q$ for some primes p and q (not necessarily distinct) then either G is abelian or $Z(G)=\{1\}$.
3. Prove that if $|G|=132$ then G is not simple.
4. Let G be a group given by the following presentation

$$
\dot{G}=\left\langle\dot{x}, y \mid x^{2}=y^{2}, x^{4} \equiv 1, x y x^{-1}=y^{-1}\right\rangle
$$

Show that G is a finite group which is isomorphic to Q_{8} (group of quaternions).
5. Let $f(x)$ be a polynomial in $F[x]$, where F is a field. Prove that $F[x] /(f(x))$ is a field if and only if $f(x)$ is irreducible.
6. Recall, an element $x \in R$ is called nilpotent if $x^{m}=0$ for some $m \in \mathbb{Z}_{+}$. Suppose that x be an element of the commutative ring R with unity.
(a) Prove that x is either zero or a zero divisor.
(b) Prove that $r x$ is nilpotent for all $r \in R$.
(c) Prove that $1+x$ is a unit in R.

COMPLEX ANALYSIS - APRIL 2009

QUALIFYING EXAMINATION

TQBIAS HAGGE

Show work and justifications clearly.
$B_{r}(z)$ denotes the open ball of radius r centered at z. A region is a connected open subset of C.
(1) Prove that the ratio test works, i.e. if $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n}+1\right|}=R$ then $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence R.
(2) Let f be analytic on a region Ω, with $f(\Omega) \subset B_{1}(1)$. Prove that $\int_{\gamma} \frac{f^{\prime}(z) d z}{f(z)}=$ 0 for all closed curves $\gamma \subset \Omega$.
(3) State and prove Liouville's theorem.
(4) Compute lim $_{k \rightarrow \infty} \int_{-k}^{k} \frac{d x}{x-i}$ using complex methods. Does $\int_{-\infty}^{\infty} \frac{d x}{x-i}$ exist?
(5) Prove the following generalization of Schwarz' lemma, assuming the original lemma, which is the $n=1$ case. Let $f: B_{1}(0) \rightarrow B_{1}(0)$ be analytic. If $f^{(m)}(0)=0$ for all $m<n$, then $\left|f^{(n)}(0)\right| \leq n!$, and $\frac{|f(z)|}{\mid z^{n}} \leq 1$. If $\left|f^{(n)}(0)\right|=n!$ or $\frac{|f(z)|}{|z|^{n}}=1$ for some $z \in B_{1}(0) \backslash\{0\}$, then $f(z)=c z^{n}$. Hint: induct and use Schwarz' lemma.

MATH 6319-CHOICE EXAMINATION
 QUALIFYING EXAMINATIONS - SPRING 2009

APRIL 10th, 2009 - CLOSED BOOK To be completed between 9 am and Noon V. Ramakrishna

- I Derive the Fourier transform of a Gaussian, by obtaining a differential equation for it (No credit for any other method). (8 points)
- II) Let G_{B} be the automorphism group of a non-degenerate bilinear form. Let $A \in G_{B}$. Show that the eigenvalues of A arise in reciprocal pairs.
(8 points)
- III Let $A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{*}$ be the singular value decomposition of A.
- i) What are the σ_{i} ?
- ii) The u_{i} are orthonormal eigenvectors of a matrix related to A ? Which matrix is that and what are the corresponding eigenvalues?
- iii) Same Q as ii), but this time for the v_{i}.
- iv) Suppose you have already found the u_{i}. How can the v_{i} be then found without having to solve an eigenvalue problem? Verify your claim.

$$
(1+1+1+6=9 \text { points })
$$

Student's chore e '09

Numerical Analysis Qualifying Exam (2009; by J. Tui)

1) Show that if U is a finite-dimensional subspace of a normed space X, then for every element in X there exists a best approximation with respect to U.
2) Discuss the application of projection methods for the solution two-point boundary value problems.
3) Show that if A is a diagonally dominant matrix, then both the Jacobimethod and the Gauss-Seidel- method converge.
4) State and prove a result for the convergence of the Newton method for the solution of systems of nonlinear equations.
5) Analyze the convergence of a semi-discrete finite difference scheme when applied to the heat equation.
