Qualifying Exam Math 6301 August 2020 Real Analysis

QE ID____

Instructions: Please solve the following problems. Work on your own and do not discuss these problems with your classmates or anyone else.

1. Let $A \subset \mathbb{R}^2$ be the graph of the function $f : \mathbb{R} \to \mathbb{R}$ given by:

$$f(x) = \begin{cases} \sin\left(\frac{2021}{x}\right), & \text{if } x \in [-1,1] \setminus \{0\};\\ 2020, & \text{if } x = 0. \end{cases}$$

Is the set $A \cup \{(0, y) \in \mathbb{R}^2 : -1 \le y \le 1\}$ measurable with respect to the Lebesgue measure on the plane? Justify your answer.

2. Let $f:[0,1] \to \mathbb{R}$ be a Lebesgue integrable function and let $K \subset [0,1]$ be a measurable subset such that $\mu(K) > 0$ and f(x) > 0 for each $x \in K$ (here μ stands for the Lebesgue measure). Show that

$$\int_{K} f d\mu > 0.$$

3. Let $f:[0,1] \to \mathbb{R}$ be a Lebesgue integrable function. Assume that

$$\int_0^x f d\mu = 0 \quad \text{for each} \quad x \in [0, 1].$$

Show that f(x) = 0 for almost all $x \in [0, 1]$.

4. Let $f:[a,b] \to \mathbb{R}$ be a C^1 -function (that is f is differentiable and f' is continuous). Show that

$$\operatorname{Var}_{a}^{b}[f] = \int_{a}^{b} |f'(x)| dx$$

(here $\operatorname{Var}_{a}^{b}[f]$ stands for the variation of f on [a, b]).

Good luck!

UTD University of Texas at Dallas

Functional Analysis I

Qualifying Exam, August 2020

Problem 1. Let \mathbb{E} be a Banach space and $C \subset \mathbb{E}$ a non-empty convex set.

(a) Show that if $x \in C$ and $y \in int(C)$ then for every $t \in (0, 1)$ we have

$$tx + (1-t)y \in \operatorname{int}(C);$$

(b) Show that if C is closed then C is also weakly closed (with respect to the weak topology $\sigma(\mathbb{E}, \mathbb{E}^*)$).

Problem 2. Consider the Euclidean space $\mathbb{E} := \mathbb{R}^n$, i.e. \mathbb{E} is equipped with the norm

$$||x||_2 := \left[\sum_{k=1}^n x_k^2\right]^{\frac{1}{2}}, \quad x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n.$$

Suppose C is an open bounded convex set such that $0 \in C$ and C = -C.

(a) Show that the function

$$||x|| = \inf\{r > 0 : x \in rC\}, \quad x \in \mathbb{R}^n$$

is a norm on \mathbb{R}^n .

(b) Show directly that there exist constants C, c > 0 such that

$$\forall_{x \in \mathbb{E}} \ c \|x\|_2 \le \|x\| \le C \|x\|_2.$$

Problem 3. Let \mathbb{E} be a reflexive Banach space and consider a continuous convex function $\varphi : \mathbb{E} \to \mathbb{R}$ such that $\lim_{\|x\|\to\infty} \varphi(x) = \infty$. Show that

$$\exists_{x_o \in \mathbb{E}} \quad \varphi(x_o) = \inf_{x \in \mathbb{E}} \varphi(x).$$

Problem 4. Consider the Banach space $\mathbb{E} := C([0,1],\mathbb{R})$ (equipped with the norm $\|\varphi\|_{\infty} := \sup_{t \in [0,1]} |\varphi(t)|$). Define the following linear operator $A : \mathbb{E} \to \mathbb{E}$ by

$$(A\varphi)(t) := \int_0^t \varphi(s) s^2 ds, \quad \varphi \in \mathbb{E}, \ t \in [0,1].$$

- (a) Show that the linear operator A is a bounded,
- (b) Compute ||A||.

Complex Analysis Qualifying Exam

Summer 2020

Friday, August 7, 2020

- 1. [25 points] True or false (Justification is needed):
 - (a) If f(z) is analytic on a domain $D \subseteq C$, and γ is a closed curve in D, then $\int f(z)dz = 0$. Is

this true for any f(z) and any D?

- (b) If f(z) is analytic on the unit disk $D = \{z : |z| < 1\}$, then there exists an $a \in D$, $a \neq 0$ such that $|f(a)| \ge |f(0)|$.
- (c) Every analytic function f(z) on a domain D has a power series expansion $f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$ for each $z_0 \in D$ with a strictly positive radius of convergence.

2. [25 points]

- (a) Given four distinct points z_1, z_2, z_3, z_4 in \overline{C} , their cross ratio, which is denoted (z_1, z_2, z_3, z_4) , is defined to be the image of z_4 under the fractional linear transformation that sends z_1, z_2, z_3 to $\infty, 0, 1$, respectively. Prove that if ϕ is a fractional linear transformation then $(\phi(z_1), \phi(z_2), \phi(z_3), \phi(z_4)) = (z_1, z_2, z_3, z_4)$.
- (b) Prove that the four distinct points z_1 , z_2 , z_3 , z_4 of \overline{C} lie on a (generalized) circle if and only if the cross ratio (z_1, z_2, z_3, z_4) is real.
- (c) Compute the cross ratio (2, -2, 2i, z) and use (b) to decide whether the points $\hat{z}_{1,2} = 1 \pm i\sqrt{3}$ and $\hat{z}_{3,4} = 2 \pm i$ lie on the circle |z| = 2.

3. [25 points]

(a) Let $H = \{z \in C \mid \text{Im} z > 0\}$ be the upper half-plane. Let $f: H \to C$ be holomorphic and satisfy $|f(z)| \le 1$ for $z \in H$ and f(i) = 0. Show that

$$|f(z)| \leq \left|\frac{z-i}{z+i}\right|$$
 for $z \in H$

- (b) Let Ω be a bounded region, $a \in \Omega$ and $f: \Omega \to \Omega$ be a holomorphic map such that $|f(a)| \leq 1$. Show that $|f'(a)| \leq 1$.
- 4. [25 points] Use the calculus of residues to evaluate the integral

$$\int_{-\infty}^{+\infty} \frac{x^2+1}{(x^2+4)(x^2+9)} dx \, .$$

Verify all steps of the calculation.

Algebra Qualifying Exam

QE ID:

INSTRUCTIONS. Write your QE ID above and solve all four problems. There is one bonus problem. Show your work and justify all statements.

Problem 1 (25 points).

(a) (5 points) State the fundamental theorem of finitely-generated abelian groups.

(b) (20 points) Determine the structure (in the form of your statement of part (a)) of the finitelygenerated abelian group generated by three elements x, y, z subject to the relations

> 2x + 4y + 2z = 0 12x + 6y + 4z = 08x + 3y + 3z = 0.

Problem 2 (25 points). Let $\mathbb{Z}(G)$ be the group ring of G over the integers (that is, the ring of formal linear combinations of elements of G, with coefficients in \mathbb{Z}). Let I be a right ideal of $\mathbb{Z}(G)$ and define

$$G_I = \{g \in G | (1 - g) \in I\}$$

Show that G_I is a subgroup of G, and that it is normal in G if I is a 2-sided ideal.

Problem 3 (25 points). Show that if H is a normal subgroup of G, then the center Z(H) of H is a normal subgroup of G. Give an example of H and G such that H is a normal subgroup of G but Z(H) is not a subgroup of Z(G).

Problem 4 (25 points).

(a) (5 points) Let G be a finite group acting on a finite set X. State Burnside's lemma for the number of orbits |X/G|.

(b) (20 points) Let G be a finite group and let $g \in G$ and $h \in G$ be two randomly chosen elements (with replacement). Show that the probability that g and h commute is k/|G|, where k is the number of conjugacy classes in G. (*Hint: use part (a).*)

Bonus (10 points). Let p and q be primes with p > q and $q \not|(p-1)$. Show that all groups of order pq are cyclic.

ODE Qualifying Exam

August 2020

QE Id:

Problem 1) (15 pts) Find the principal matrix solution at $t_0 = 0$ for the following system.

$$\begin{cases} x_1' = 2x_1 - x_2 \\ x_2' = x_1 + 4x_2 \end{cases}$$

Problem 2) Solve the following initial value problems:

2a) (10 pts) $8txx' + 12x^2 = -4t$ where x(1) = 1

2b) (10 pts)
$$x' = 3t^2 + 2\sqrt{x - t^3}$$
 $x(0) = 4$

Problem 3) (15 pts) Find the solution to the following differential equation.

$$t^{2}x'' + tx' - 4x = \frac{12}{t} \qquad x(1) = 1 \quad x'(1) = 2$$

(*Hint:* $x = t^2$ is a homogeneous solution)

Problem 4) (15 pts) Prove or give a counterexample for the following statement:

Let x' = f(t, x) with $x(t_0) = x_0$. If $f \in C^1(\mathbb{R}^2, \mathbb{R})$, then there exists a unique solution $\phi(t)$ whose domain is \mathbb{R} .

[Here, $\mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ represents at least once differentiable functions whose domain is \mathbb{R}^2 .]

Problem 5) (20 pts) Consider the following ODE: $x' = t - \ln x$

5a) Discuss the limit of the solution x(t) when $t \to \infty$ for a given initial condition $x(t_0) = x_0 > 0$.

5b) Is there any solution where $|x(t)| \to \infty$ in finite time?

Problem 6a) (9 pts) Find the normalized eigenfunctions of the following problem.

$$y'' + \lambda y = 0$$
 $y'(0) = 0$ $y(\pi) = 0$

6b) (6 pts) By using part a, find a function f(x) where the following equation has no solution.

$$y'' + \frac{9}{4}y = f(x)$$
 $y'(0) = 0$ $y(\pi) = 0$

Qualifying Exam Math 7329 August 2020 Topological and algebraic methods in nonlinear DEs

QE ID_

Instructions: Please solve the following problems. Work on your own and do not discuss these problems with your classmates or anyone else.

1. Given a matrix

$$A = \begin{pmatrix} a & 0 & 0 & b \\ 0 & c & d & 0 \\ 0 & -d & c & 0 \\ -b & 0 & 0 & a \end{pmatrix}$$

and a vector $v = (1, 2, 3, 4)^t$, under which conditions with respect to the parameters a, b, c and d does the system

$$\dot{x} = Ax + \cos^{2020}(2t)v \qquad (x \in \mathbb{R}^4)$$

admit a periodic solution? Justify your answer.

2. Does the system

$$\begin{cases} \dot{x} = 4x^3 + 2xy^2 + 2xz^2 + (3y^2 + 4z^2 + 2020)\cos(2t) \\ \dot{y} = 2x^2y + 4y^3 + 2yz^2 + (4x^2 + 11z^2)\sin(2t) \\ \dot{z} = 2x^2z + 2zy^2 + 4z^3 + (8x^2 + 4y^2)\cos(2t) \end{cases}$$

admit a periodic solution? Justify your answer.

3. Let K_1 and K_2 be two compact sets in \mathbb{R}^2 . Show that there exist $a, b, c \in \mathbb{R}$ such that:

 $\mu\{(x,y) \in K_1 : ax + by \ge c\} = \mu\{(x,y) \in K_1 : ax + by \le c\}$

and

$$\mu\{(x,y) \in K_2 : ax + by \ge c\} = \mu\{(x,y) \in K_2 : ax + by \le c\}$$

(here " μ " stands for the Lebesgue measure on the plane).

4. Let $D \subset \mathbb{C}$ be the unit disc. Show that any two continuous paths γ_1 and γ_2 in \overline{D} such that γ_1 connects 1 and -1 and γ_2 connects *i* with -i, must intersect in \overline{D} .

Good luck!

Combinatorics and Graph Theory QE QE ID:

INSTRUCTIONS. Write your QE ID above and solve all four problems. There is one bonus problem. Show your work and justify all statements.

Problem 1 (25 points).

(a) (5 points) State the Havel-Hakami Theorem, giving a condition for a degree sequence to be graphic.

Use the Havel-Hakami Theorem to determine which of the following degree sequences are graphic. If the degree sequence is graphic, draw a graph G with that degree sequence.

(b) (5 points) $d_1 = (3, 3, 3, 3, 2)$

(c) (5 points) $d_2 = (4, 3, 3, 2, 1)$

(d) (5 points) $d_3 = (4, 4, 3, 2, 1)$

(e) (5 points) $d_4 = (2, 2, 2, 1, 1)$

Problem 2 (25 points). Prove that if G is a planar graph, then v - e + f = 2, where v is the number of vertices of G, e is the number of edges, and f is the number of faces.

Problem 3 (25 points). Let F_n denote the number of ways to climb n steps using one or two steps at a time.

(a) (10 points) Show that $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

(b) (15 points) Show that the ordinary generating function for the sequence $(F_n)_{n=0}^{\infty}$ is $F(x) = \frac{1}{1-x-x^2}$.

Problem 4 (25 points). Give a combinatorial proof that $\sum_{k=0}^{n} k {\binom{n}{k}}^2 = n {\binom{2n-1}{n-1}}$. (Non-combinatorial proofs will only receive partial credit.)

Bonus (10 points). How many binary sequences $(\epsilon_1, \epsilon_2, \ldots, \epsilon_n)$ (with $\epsilon_i \in \{0, 1\}$) satisfy $\epsilon_1 \leq \epsilon_2 \geq \epsilon_3 \leq \epsilon_4 \geq \epsilon_5 \leq \cdots$?