Qualifying Exam
 Math 6301 Summer 2017
 Real Analysis

Name
Instructions: Please solve the following problems. Work on your own and do not discuss these problems with your classmates or anyone else.

1. Show that a set $A \subseteq E$, where E is given by

$$
E:=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x, y \leq 1\right\}
$$

is Lebesgue measurable iff for every $\epsilon>0$, there is an open set $G \subseteq E$ and a closed $F \subseteq E$, such that

$$
F \subseteq A \subseteq G
$$

and

$$
\mu(G \backslash F)<\epsilon
$$

2. Consider a sequence of functions

$$
f_{n}(x)=\frac{n \sin (x)}{1+n^{2} \sin ^{2}(x)}, \quad(x \in[0, \pi] .
$$

(i) Does this sequence converge pointwisely? Justify your answer.
(ii) Does this sequence converge uniformly? Justify your answer.
(iii) Take $\delta>0$. Find explicitly a set $E_{\delta} \subset[0, \pi]$ such that the sequence $\left\{f_{n}\right\}$ converges uniformly on E_{δ} and $\mu\left([0, \pi] \backslash E_{\delta}\right)<\delta$.
3. (a) Let

$$
A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset \cdots \subset[a, b]
$$

be a sequence of measurable sets and let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative integrable function. Show that

$$
\lim _{n \rightarrow \infty} \int_{A_{n}} f(x) d \mu=\int_{A} f(x) d \mu, \quad \text { where } \quad A:=\bigcup_{n=1}^{\infty} A_{n}
$$

(b) Is the above statement true without the hypothesis " f is non-negative"? Justify your answer.
4. Compute $\int_{[0, \pi / 2]} f d \mu$, where

$$
f(x)= \begin{cases}\sin ^{5}(x), & \text { if } \cos (\mathrm{x}) \text { is rational } \\ \cos ^{6}(x), & \text { if } \cos (\mathrm{x}) \text { is irrational }\end{cases}
$$ University of Texas at Dallas

Functional Analysis I
Qualifying Exam, Summer 2017

Instructions

(a) Attempt to solve all four questions, however only the best three of your solutions will be considered.
(b) Include all the related to the problems definitions and state all the results that you are using in your solutions.
(c) Please write clearly and use your notation carefully, so we can avoid unnecessary misunderstandings.

Problem 1. (a)-(e)

(a) Let \mathbb{E} be a normed space and $\varphi: \mathbb{E} \rightarrow(-\infty, \infty]$ a given function.
(i) Give a definition of the conjugate function $\varphi^{*}: \mathbb{E}^{*} \rightarrow(-\infty, \infty]$.
(ii) List all the properties of the conjugate function φ^{*}.
(b) For a linear subspace L of the normed space \mathbb{E} compute ψ^{*}, where $\psi(x)=I_{L}(x)$ is the indicatrice function of L.
(c) Let \mathbb{E} be a normed space, $x_{o} \in \mathbb{E}$ a fixed vector and $\varphi(x)=\left\|x-x_{o}\right\|, x \in \mathbb{E}$. Compute φ^{*}.
(d) State Fenchel-Rockaffellar Theorem.
(e) Let \mathbb{E} be a normed space. Suppose that $L \subset \mathbb{E}$ is a linear subspace and let $x_{o} \in X$ be such that $\operatorname{dist}\left(x_{o}, L\right)=d>0$. Show that there exists $f_{o} \in \mathbb{E}^{*}$ such that $\left\langle f_{o}, x_{o}\right\rangle=d,\left\|f_{o}\right\|=1$ and

$$
\forall_{x \in L} \quad\left\langle f_{o}, x\right\rangle=0 .
$$

Problem 2. Let \mathbb{E} be a Banach space and $T: \mathbb{E} \rightarrow \mathbb{E}^{*}$ a linear operator satisfying

$$
\begin{equation*}
\forall_{x, y \in \mathbb{E}} \quad\langle T x, y\rangle=\langle T y, x\rangle . \tag{1}
\end{equation*}
$$

Prove that T is a bounded operator.

Problem 3. Let \mathbb{E} and \mathbb{F} be Banach spaces and $A: \mathbb{E} \rightarrow \mathbb{F}$ a bounded linear operator.
(a) Give a definition of the operator norm $\|A\|$;
(b) Show that $\|\cdot\|$ is indeed a norm on $L(\mathbb{E}, \mathbb{F})$ (check all the required conditions);
(c) Give the definition of the adjoint operator A^{*};
(d) Show that if $A: \mathbb{E} \rightarrow \mathbb{F}$ is an isomorphic, then A^{*} is also an isomorphism.

Problem 4. Assume that $V=\mathbb{R}^{n}$ and let $\|\cdot\|: V \rightarrow \mathbb{R}$ be an arbitrary norm on V. Put $\varphi(x):=\|x\|$ for $x \in V$.
(a) Show that the function φ is convex.
(b) Show that

$$
\exists_{c, d>0} \forall_{x \in V} \quad\|x\|_{\infty}=1 \Rightarrow c \leq \varphi(x) \leq d
$$

where

$$
\|x\|_{\infty}:=\max _{1 \leq k \leq n}\left|x_{k}\right|, \quad x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

(c) Show that the norms $\|\cdot\|$ and $\|\cdot\|_{\infty}$ are equivalent.

Complex Analysis Qualifying Exam

Summer 2017

August 11, 2017

1. The differentiability is considered in the complex sense.
(a) Determine, using the definition of differentiability, whether $f: C \rightarrow C$ given by $f(z)=\left|z-z_{0}\right|$ is differentiable or not differentiable at $z=z_{0}$. Prove your answer.
(b) Let $a \in R$ be fixed and $f(z)=z-\bar{z}+a \cdot \bar{z}^{2}$. Determine the set of points $z \in C$ at which $f(z)$ is differentiable. Is $f(z)$ analytic at these points?
2. Find all fractional-linear transformations that map the lower half-plane onto the unit disk.
3. Does there exist an analytic function $f: D \rightarrow D$ with $f\left(\frac{1}{2}\right)=\frac{3}{4}$ and $f^{\prime}\left(\frac{1}{2}\right)=\frac{2}{3}$, where D is the open unit disk?
4. Use the calculus of residues to evaluate the improper integral

$$
\int_{0}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)^{3}} d x .
$$

Verify all steps of the calculation.

Abstract Algebra Qualifying Exam

August 9, 2017
Name \qquad
Instructions. Please solve any four problems from the list of the following problems (show all your work).

1. Let D_{6} be the dihedral group of symmetries of a regular hexagon.
a) Find all subgroups of order 4 in D_{6} and the center $Z\left(D_{6}\right)$ of D_{6}.
b) Find all subgroups of D_{6} that are isomorphic to the dihedral group D_{3} of symmetries of an equilateral triangle.
c) Give an example of a Sylow 3-subgroup of D_{6}.
2. Let G be a group, $Z(G)$ denotes the center of G, and $\operatorname{Inn}(G)$ be the group of all inner automorphisms of G.
a) Suppose that $Z \leq Z(G)$ and G / Z is cyclic. Show that G is abelian.
b) Find the group $\operatorname{Inn}\left(D_{4}\right)$ of all inner automorphisms of D_{4}, where D_{4} is the dihedral group of symmetries of a square.
3. Let G be a group that acts on the set Ω. Prove that, if $a, b \in \Omega$ and $b=g \cdot a$, for some $g \in G$, then

$$
G_{b}=g G_{a} g^{!1}
$$

where G_{x} is the stabilizer of x. Deduce that if G acts transitively on Ω, then the kernel of the action is $\bigcap_{g^{\prime \prime} G} g G_{a} g^{!1}$.
4. Let G be a group and $x, y \in G$. Define the commutator of x and y by $[x, y]=x^{!}{ }^{1} y^{!}{ }^{1} x y$. Let $[G, G] \leq G$ be a subgroup of G generated by the set $\{[x, y] \mid x, y \in G\}$.
a) Show that $[G, G]$ is a characteristic subgroup of G, i.e. $[G, G]$ char G.
b) Show that if H is a normal subgroup of G (i.e. $H \unlhd G$) and K char H then $K \unlhd G$.
5. Let G be a group. Show that:
a) Show that if $H \leq G$ and $|G: H|=2$ then $H \unlhd G$.
b) If the order of G is 56 then G is not simple.
6. Prove the following statements:
a) Let M and N be normal subgroups of a group G with $M \cap N=\{1\}$. Then $m n=n m$ for all $m \in M$ and $n \in N$.
b) Prove that no group of order 48 is simple.

Name:

\qquad

Qualifying Exam: Ordinary Differential Equations I, August 2017

THIS IS A CLOSED BOOK, CLOSED NOTES EXAM
Problems count 25 points each

Give clear and complete answers with full details in proofs

1. Consider the initial value problem $x^{\prime}=x^{1 / 5}$ and $x(0)=x_{0}$ for $t \geq 0$.
a) Is the solution to the above IVP unique if $x_{0}=1$? Clearly justify/prove your answer.
b) Is the solution to the above IVP unique if $x_{0}=0$? Clearly justify/prove your answer.
2. Consider the differential operator L, defined by the operation $L u=i \frac{d u}{d t}$, acting on differentiable functions u defined over [0,2] with the condition that $u(2)=\alpha u(0)$, where $i=\sqrt{-1}$ and α is a complex number. Find a general condition on α that will make the differential operator L to be self adjoint.
3. Consider the boundary value problem on $[0, \pi]$ for the equation

$$
x^{\prime \prime}+\lambda x=0,
$$

with $x^{\prime}(0)=0$ and $x(\pi)=0$.
a. Are there any eigenvalues which are not real?
b. Find the eigenvalues
c. Find the corresponding eigenfunctions.
4. Define the successive approximate solutions ϕ_{k} of $x^{\prime}=f(t, x)$ with $x(\tau)=\xi$? If $f \epsilon(C, L i p)$ on R , then give a detailed proof that ϕ_{k} 's converge uniformly to a unique solution ϕ of the above IVP.

MATH 6319-Ph. D Qualifying Examinations Summer 2017
 V. Ramakrishna

CHOICE: Do any $\mathbf{4}$ of the Qs below. Each \mathbf{Q} is worth 25 points.

- Q1 Compute in closed form the eigenvalues of the matrix $A=$ $(i+j)$. Explain your work.
- Q2 State carefully the term recurrence relations satisfied by orthonormal polynomials. Reformulate this recurrence in terms of matrices and explain why this implies that the zeroes of such polynomials are real and simple.

- Q3

State and prove Fischer's inequality for positive semidefinite matrices.

- Q4 State and prove the Crabtree-Haynsowrth formula. You may assume a certain formula (which, however, must be stated precisely at the point of usage) regarding Schur complements in a product of 3 matrices.

Q5 Show that the Fourier transform of a Gaussian is another Gaussian, by setting up a differential equation for the Fourier tarnsform.

Q6 Let f and g equal the characteristic function of $[0,1]$. Compute in closed form their convolution.

